Inference after Model Averaging in Linear Regression Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Model Averaging for Linear Regression Models

We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferenc...

متن کامل

Sequential Model Averaging for High Dimensional Linear Regression Models

In high dimensional data analysis, we propose a sequential model averaging (SMA) method to make accurate and stable predictions. Specifically, we introduce a hybrid approach that combines a sequential screening process with a model averaging algorithm, where the weight of each model is determined by its Bayesian information (BIC) score (Schwarz, 1978; Chen and Chen, 2008). The sequential techni...

متن کامل

Bayesian Model Averaging of Dynamic Linear Models

In this paper we aim to compare the performance of three different Bayesian model averaging (or mixture) methods applied to regression dynamic linear models for beverage data from Zimbabwe. The models are chosen to reflect different plausible causal structures of association between beverage sales and other variables, thought to influence beverage sales, such as prices, temperature and maize cr...

متن کامل

Adaptive MC and Gibbs Algorithms for Bayesian Model Averaging in Linear Regression Models

The MC3 (Madigan and York, 1995) and Gibbs (George and McCulloch, 1997) samplers are the most widely implemented algorithms for Bayesian Model Averaging (BMA) in linear regression models. These samplers draw a variable at random in each iteration using uniform selection probabilities and then propose to update that variable. This may be computationally inefficient if the number of variables is ...

متن کامل

Bagged Averaging of Regression Models

Linear regression and regression tree models are among the most known regression models used in the machine learning community and recently many researchers have examined their sufficiency in ensembles. Although many methods of ensemble design have been proposed, there is as yet no obvious picture of which method is best. One notable successful adoption of ensemble learning is the distributed s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2017

ISSN: 1556-5068

DOI: 10.2139/ssrn.3039829